on supersolvability of finite groups with $mathbb p$-subnormal subgroups
Authors
abstract
in this paper we find systems of subgroups of a finite group, which $bbb p$nobreakdash-hspace{0pt}subnormality guarantees supersolvability of the whole group.
similar resources
on supersolvability of finite groups with $bbb p$-subnormal subgroups
in this paper we find systems of subgroups of a finite group, which $bbb p$-subnormality guarantees supersolvability of the whole group.
full textON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS
Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...
full textFinite Groups Whose «-maximal Subgroups Are Subnormal
Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...
full textlocally finite p-groups with all subgroups either subnormal or nilpotent-by-chernikov
we pursue further our investigation, begun in [h.~smith, groups with all subgroups subnormal or nilpotent-by-{c}hernikov, emph{rend. sem. mat. univ. padova} 126 (2011), 245--253] and continued in [g.~cutolo and h.~smith, locally finite groups with all subgroups subnormal or nilpotent-by-{c}hernikov. emph{centr. eur. j. math.} (to appear)] of groups $g$ in w...
full textFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
full textFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of group theoryPublisher: university of isfahan
ISSN 2251-7650
volume 2
issue 4 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023